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S T A B I L I T Y  O F  N O N - N E W T O N I A N  F L U I D  F L O W S  

L. A. S p o d a r e v a  UDC 532.536 

The stability of non-Newtonian fluid films moving on inclined planes is studied within the 
framework of the two-parameter Ostwald-de Waele model taking into account surface tension 
and van der Waals forces. The problem is solved analytically in the linear formulation, and 
the evolution of finite-amplitude perturbations is determined numerically. 

Non-Newtonian fluids are characterized by a nonlinear relationship between the shear stress and the 
shear velocity of the flow. These fluids are often encountered in nature and industrial technologies (volcanic 
lava, mudflows, oil, plastics, oil-based paints, and polymer solutions and melts). 

A model that  offers a satisfactory description of the motion of anomalously viscous non-Newtonian 
fluids is the Ostwald-de Waele model with a power-law relationship between the shear stress and the shear 
velocity (see, e.g., [1]). This model contains the dynamic viscosity rl0 and the exponent n characterizing the 
non-Newtonian behavior of the fluid: the more the value of n differs from unity (n = 1 corresponds to the 
Newtonian fluid), the more distinctly the anomalously viscous properties are manifested. Depending on the 
exponent, non-Newtonian fluids are classified into pseudoplastic ones (n < 1), for example, petroleum and 
some oils (n -~ 0.8), and dilatant fluids (n > 1), for example, saccharified honey (n > 2) [1-3]. A dry granular 
medium in the inertial regime can be considered as a dilatant fluid with n = 2 [4-6], since the shear stress in 
such a medium is proportional to the shear velocity squared. 

In the present work, we consider the stability of layers of incompressible non-Newtonian fluids moving 
over a rough inclined plane to perturbations of small and finite amplitudes with account of surface tension. 
The analysis is performed on the basis of the equations of mass and momentum balance averaged over the 
layer thickness, which ate supplemented by the Ostwald-de Waele equation of state. The corresponding linear 
analysis of stability with ignored surface tension was performed in [7, 8], and Hwang et al. [9] presented a brief 
linear analysis with account of surface tension for small deviations of the fluid properties from Newtonian 
ones (n = 1 4- 5, where 5 << 1). Berezin et al. [8] also gave some results of a numerical study of the evolution 
of localized finite-amplitude perturbations. 

Assuming, as in [7, 8], that  the characteristic thickness of a fluid layer H0 is much smaller than the 
characteristic linear size Lo (~ =- Ho/Lo << 1), we write the initial equations and boundary conditions taking 
into account surface tension on the solid plane and free surface: 

(1) 
py ---- --pg COS/3, uz + Vy = 0; 

u = v = 0  for y = 0 ;  

p = - a H x x ,  u y = 0 ,  H t + u H x = v  for y = H ( x , t ) .  

(2) 

Novosibirsk Military Institute, Novosibirsk 630117. Translated from Prikladnaya Mekhanika i Tekhnich- 
eskaya Fizika, Vol. 41, No. 3, pp. 75-80, May-June,  2000. Original article submitted June 17, 1999; revision 
submitted September 7, 1999. 

446 0021-8944/00/4103-0446 $25.00 @ 2000 Kluwer Academic/Plenum Publishers 



Here x is the coordinate along the inclined plane, y is the coordinate perpendicular to the latter, t is the time, 
p is the fluid density, g is the acceleration of gravity, p is the pressure, u and v are the velocity components, 

is the angle with the horizontal plane, ~n [m 2 " seal '-2] is the kinematic viscosity of a non-Newtonian fluid 
with an exponent n, ~ = A H / H  3 is the potential  of long-range molecular van der Waals forces, and AH [J] 

is the Hamaker constant (see, e.g., [10, 11]). 
Following [12, 13], we average Eqs. (1) over the layer thickness by integrating them over the y coordinate 

from the bot tom of the layer y = 0 to the free surface y = H ( x ,  t) using the boundary conditions (2). As a 
result, we obtain the following equations in dimensionless variables: 

Ht + (~x = 0, (3) 

( 3  3A0 
Qt+~__~__~,z4n+2 Q2 = l _ _ l . _ ( 2 n + l ~ n ~ [ l _ ~ H z c o t ~ ( l _ H 4 e O n \  n / [ cos 9 ) ] H - - ~ 2 n }  +~2WenHH~xx"  

Here Q is the volume discharge of the fluid and O,, is the Ostwald number. The following scales were used to 
pass to dimensionless variables: characteristic distances along and across the layer (L0 and H0, respectively), 

= H o / L o  << 1, the time to = Lo/uo,  and the longitudinal velocity uo = Qo/Ho.  The  discharge scale is 

( sin ),/o . H~2n+l)/,~ 
Q 0 =  \ ~. J 2 n + l  

H 2 n - 2 ~ 2 - n / u  r~n 2--n~ The dimensionless parameter  O,~ = 0 w0 / ,~ = ~0 u0 / ~ ,  which was called the Ostwald number 
in [8], is an analog of the Reynolds number for non-Newtonian media that  obey the power law. Another 
dimensionless parameter  Wen = GHo/(pQ 2) = a / ( p u s H o  ) "  is the Weber number for a non-Newtonian fluid; 
Ao = A H / ( p g H  4) and (7 is the surface tension. 

As in [7-9], we linearize system (3) relative to small perturbations of a moving homogeneous laver of 
constant thickness assuming that  H = 1 + h and Q = 1 + q (h .q  << 1). Representing the solution of the 
resultant system of two linear equations in the form of periodic waves h, q ~ exp ( i ( kx  - wt)) ,  we obtain the 
dispersion equation 

w'- - (2ak - ib)w + ck 2 - i f k  - ~21,Venk4 = 0, (4) 

where w is the complex frequency, k is the real wavenumber of small perturbations,  a = (4n + 2) / (3n + 2), 
b = ((2,. + 1 ) / n ) n , / ( e O n ) ,  c = a - ((2,  + 1)/n)~(1 - 3 A o / c o s ~ ) c o t  ~/O~, and f = b(2n + 1) /n .  We write 
the complex frequency in the form w = w~ + i7, where wr is the real frequency and 7 is the growth rate, and 
introduce the phase velocity of perturbations v = w~/k.  Substituting these formulas into (4) and separating 
the real and imaginary parts, we obtain 

= b ( v 0  - - o ) ) :  ( 5 )  

~2 W-e,k 4 _ (v 2 _ 2av + c)k 2 - b2('v - vo)(v + vo - 2a) / (4 (v  - a) 2) = 0, (6) 

where v0 = f / b .  With accuracy to notation, Eqs. (5) and (6) coincide with the corresponding equations for 
the cases Wen = 0 [7, 8] and Wen r 0 [9]. We also note that  Zqs. (5) and (6) are transformed to those given 
in [12] in the special case of the Newtonian fluid (n = 1). 

It follows from (5) that  the growth rate 7 is positive for v < v0 and negative for v > v0. Thus, the 
motion of a homogeneous layer under consideration is unstable to small periodic perturbat ions with a phase 
velocity v < v0 and stable to small perturbations that  have a phase velocity v > v0. This critical phase 
velocity is equal to v0 = (2n + 1)/n; for small values of n (strongly pseudoplastic fluids), we have vo ~ ~-1, 
and for n -o oz (strongly dilatant fluids), we obtain v0 = 2. For the Newtonian fluid, we have v0 = 3. 

Relation (6) is a biquadratic equation for the wavenumber, and the expression for the wavenumber 

squared has the form 

k2 = (v - v l ) ( v  - v2) [1 - e2We'b2('v~ - v)(vo + v - 2a)] 1/2 
" 2 T ~ e :  {14-  ~ - ( ' v - - - a ~ "  : v - ' ~ ( v :  v - ~  J } '  (7) 
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Fig. 1. Neutral curves of stability: (a) solution of napahn in kerosene (n = 0.52 and O~ = 0.27): We = 0.1 
(curve 1), 1 (curve 2), and 10 (curve 3): (b) lime-water mixture (n = 1.47 and O~ = 2.33): We = 1 
(curve 1), 10 (curve 2), and 100 (curve 3). 

where vl = a 4- (a 2 - c) 1/2 and v2 = a - (a 2 - c) 1/2. The  growth rate ~/vanishes for v = v0. This happens for 

two values of the wavenumber: k 2 = 0 and k 2 - k2. = (vo - v l ) ( v o  -v2 ) / (~2~Ven) .  Substituting the values of 
v0, vl, and v2, we find the boundary  wavenumber squared: 

k," - ~2We,,n22n + 1 [1 - ( 2 n  + 1)n- ln2-n  (1 3A0 ~ cot L71 (8) 

It follows from this formula and above considerations that  the flow under s tudy is stable (7 ~< 0) for On ~< On, 
where O* = (2n 4-1)n- ln2-n(1  - 3 A o / c o s  3) cot/7 is the critical Ostwald number. In the case of fluid motion 

over a vertical wall (3 -- 90~ the critical Ostwald number is equal to zero for A0 --- 0 and negative for 
A0 r 0; therefore, perturbat ions are unstable for all Ostwald numbers. Taking into account van der Waals 
forces (A0 =fi 0) leads to a decrease in O~. Nevertheless, since the Hamaker constant is small (for example, 

for water films we have AH ~ 10 -20 J), the influence of this effect is significant only for ultrathin films of 
thickness of the order of 10 - 7 m .  If the Ostwald number is greater than the critical value, there exists a finite 
region of wavenumbers Ak = 0-k. ,  wherein small perturbat ions are unstable (the growth rate is positive). If 
the surface tension is ignored, the region of unstable wavenumbers is unbounded (k --+ ~ )  (8). The surface 

tension stabilizes small~scale perturbations,  making the region of unstable wavenumbers finite (k. , , ,  1/2~ wen ). 
For small deviations of the Ostwald number from the critical Value, when On = On (14- (~), where 5 << 1, 

we have k. 2 = (e2Wen)- lh(2n + 1) /n  2 from [8]. Hence, for fluids with small exponents, the boundary value of 
the unstable wavenumber is k. ,,~ n - i  , and in the case of fluids with high exponents, we have k. ,-~ n -1/2. For 
fixed values of the Weber number and Ostwald numbers other than the critical one, the boundary wavenumber 
decreases monotonically as we pass from pseudoplastic media to dilatant ones. From formula (6), we obtain 
the equation of the neutral  curve On = On(k)  separating the regions of stability and instability: 

On = On/(1 - e 2 W e n n 2 k 2 / ( 2 n  4- 1)). 

Two fluids (pseudoplastic and dilatant) were chosen for calculations. Their  parameters can be found 
in [1]: napalm solution in kerosene (n = 0.52, v = 5.35.10 -3 m 2. sec "-2,  a = 0.026 N/m,  and p = 800 kg /m 3) 
and l ime/water  mixture  (n = 1.47, v = 2.5 �9 10 -7 m 2 �9 sec n-2'  a = 0.076 N/m,  and p = 1000 kg/m3). In 

all calculations, we had a = 0.1 and 3 -- 45 ~ The  neutral  curves for various Weber numbers are shown in 
Fig. 1. Regions above and to the left of these neutral curves correspond to stability, and those below and to 
the right of the neutral  curves correspond to instability. 

If the power-law functions are inspected from the mathematical  point of view, the parameters n, On, 
and Wen can be chosen independently of each other. If the calculations are made for particular fluids, 
these parameters  cannot be chosen independently. Indeed, the Ostwald and Weber numbers depend on the 
discharge Q0 whose substi tut ion into the corresponding formulas yields 

On = (g sin 3)  (2-n)/n n 2 - n ( 2 n  + 1)n-2t~n2/nH(o n+2)/n, 
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Fig. 2. Growth rates (solid curves) and 
phase velocities (dashed curves) versus the 
wavenumber: n = 0.52, O,, = 7.2, and 
We = 1 (curves 1) and n = 1.47, On = 488, 
and We = 11.9 (curves 2). 

Wen -~ (~ / f l )  (9 sin ,2)-2/'2 n-2  (2n + 1 )211~/nHo(3n+2)/n. 

The fluid parameters  n, ~,,, and ~/p  and the angle of inclination 2 given, the only quanti ty determining 

the Ostwald and Weber numbers is the unper tu rbed  thickness of the layer H0 whose variation leads to 
simultaneous variation of these numbers; the greater this thickness, the greater the Ostwald number  and the 
smaller the Weber number,  and vice versa. 

Figure 2 shows the growth rates and phase velocities of small per turbat ions  versus the wavenumber.  
The  evolution of finite-amplitude per turbat ions  was studied numerically. For a numerical solution 

of system (3) with ignored surface tension, Berezin et al. [8] used an explicit finite-difference scheme in 

which the mass and momentum fluxes were approximated by one-sided differences in accordance with the 
flow direction, and the te rm HHx  proport ional  to the pressure gradient was approximated by the central 
difference. This scheme possesses conventional stability; the ratio of the steps 5t/gx necessary for stabili ty 

was chosen by additional calculations. Taking into account surface tension increases the order of the highest 
derivative relative to the coordinate up to three. This scheme supplemented by a symmetr ic  finite difference 
for approximat ion of the third derivative was used to solve system (3): 

5t 
H l i  = Hi - ~x (u~+o.5Hi - ui-o.5Hi-1),  

5t (it Hi(Hi+l - Hi - I )  Qli  = Qi - an ~x (ui+o.5uiHi - tti-o 5Ui-lHi-1) - sb, cot ~ 

-+-bnSt Hi - ~ ]  A-~2Wen 2-~x3 Hi(Hi+2 - 2Hi+l -f- 2Hi- l  - Hi-2).  

Here H l i  = H~ ~+1, Ql i  = Q~,,+I, Hi = H~ ~, Qi = Q~;  t m+l = (m + 1)5t, t m = rest, ui+o.5 = (ui + ui+l)/2,  
ui-0.5 = (ui + u i -1) /2 ,  a ,  = (4n + 2) / (3n  + 2), and b~ = ( sO~) - l ( (2n  + 1)/n)  n. The scheme is convenient 
for implementat ion,  and its conventional stability, which requires choosing 5t < 5x 3, is not a great restriction 

because of the one-dimensionality of the problem. The  initial localized per turba t ion  was chosen in the form 
of an isosceles triangle with a height of 0.t  of the thickness of an unper turbed fluid layer. The  free-stream 

conditions H = 1 and Hx = H~z = 0 for x = 0 and x = Xma~ were used as the boundary  conditions. The  use 
of these boundary  conditions implies tha t  the numerical solution is performed as tong as this per turba t ion  is 

ra ther  far from the boundaries of the computat ional  domain (this condition is defined in the algorithm). 
Figure 3a shows the profile of the free surface of a layer of a pseudoplastic fluid (n = 0.52) moving 

over an inclined plane at the times t = 0 and 10 (in dimensionless units) after sudden liberation of the initial 
bubble for On = 7.2 and We = 0, which corresponds to the absence of surface tension. Since the Ostwald 
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Fig. 3. Profiles of the free surface of a liquid layer for n = 0.52 and On = 7.2: (a) t = 0 and 10 and 
We = 0; (b) t = 0 and 3 and We = 1 (solid curve) and We = 0 (dashed curve). 
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Fig. 4. Profiles of the free surface of a liquid layer for n = 1.47 and 0,~ = 488: (a) t = O, 10, and 
20 and We = O; (b) t = 0 and 3 and We = 11.9 (solid curve) and 0 (dashed curve). 

number  is greater than  the critical value 0.23, the initial per turbat ion  of a t r iangular  form is unstable; a wave 

s t ructure  consisting of a number  of compression teeth  with sharp leading edges arises with time. Gradually, 
the first tooth  moves away from the rest of the teeth,  and a region where the free surface is lower than  the 

unper tu rbed  level appears  between the first and the next tooth. Such a s t ructure  consisting of a shock with 

a sharp  leading front and subsequent rarefaction acquires a form similar to s teady solutions analyzed by Ng 
and Mei [7]. Thus,  a typical feature of each par t  of the overall wave s t ructure  is a very narrow front, a smooth  

decrease in ampli tude when moving to tile region of lower values of the x coordinate, and a ra ther  extended 

region between the subsequent shocks where H < 1. 
Figure 3b shows the calculation results for the free-surface profile at the times t -- 0 and 3 for On = 7.2, 

where the effect of surface tension is taken into account (solid curve) or not (dashed curve). The  ampli tudes of 

shocks decrease in the presence of surface tension, and an oscillator precursor moving ahead of the disturbance 

front appears  on the free-surface profile. This phenomenon can be explained by dispersion of low-amplitude 

modes.  Thus,  though the  presence of surface tension does not change the critical Ostwald number,  its action 

is manifested in the decrease in ampl i tude and dispersion smearing of the profile. 
Figure 4a and b shows the profiles of the free surface of a layer of a di latant  fluid (n = 1.47) without 

and with account of the surface tension forces, respectively. The  surface tension leads to format ion of a 

typical  dispersion s t ructure  with oscillations bo th  ahead of and behind the main front (Fig. 4b). 
The  author  is grateful to Yu. A. Berezin for useful discussions. 

450 



R E F E R E N C E S  

1. Z. P. Shul'man and B. M. Berkovskii, Boundary Layer of Non-Newtonian Fluids [in Russian], Nauka 
Tekhnika, Minsk (1966). 

2. R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, Vol. 1. John Wiley and 
Sons, New York (1977). 

3. F. R. Eirich, Rheology, Vol. 4, Academic Press, New York (1967). 
4. R. A. Bagnold, "Experiments on a gravity free dispersion of large solid spheres in a Newtonian fluid 

under shear," Proc. Roy. Soc. London, A225, 49-63 (1954). 
5. Yu. A. Berezin, K. Hutter; and L. A. Spodareva, "Stability properties of shallow granular flows," Int. J. 

Non-Linear Mech., 33, No. 4, 647-658 (1998). 
6. Yu. A. Berezin and L. A. Spodareva, "Analysis of stability of a thin layer of granular material moving 

on an inclined plane, ~ Prikl. Mekh. Tekh. Fiz., 39, No. 6, 113-117 (1998). 
7. C. Ng and C. C. Mei, "Roll waves on a shallow layer of mud modelled as a power-law fluid," J. Fluid 

Mech., 263, 151-183 (1994). 
8. Yu. A. Berezin. K. Hutter, and L. A. Spodareva, "Stability analysis of gravity driven shear flows with 

free surface ~br power-law fluids," Arch. Appl. Mech., 68, 169-178 (1998). 
9. C. Hwang, J. Chen, J. \Vang, and J. Lin, "Linear stability of power-law liquid film flows down an inclined 

plane," J. Phys., D, Appl. Phys., 27, 2297-2301 (1994). 
10. T. Erneux and S. H. Davis, "Nonlinear rupture of free fihns," Phys. Fluids, A5, No. 5, 1117-1122 (1993). 
11. A. de Witt, D. Gallez, and C. I. Christov, "Nonlinear evolution equations for thin liquid films with 

insoluble surfactants," Phys. Fluids, 6, No. 10, 3256-3266 (1994). 
12. S. V. Alekseenko, B. E. Nakoryakov, and B. G. Pokusaev, "Wave formation in a flow of a liquid film over 

a vertical wall," Prikl. Mekh. Tekh. Fiz., No. 6, 77-87 (1979). 
13. S.V. Alekseenko, B. E. Nakoryakov, and B. G. Pokusaev, Wave Flow of Liquid Films [in Russian], Nauka, 

Novosibirsk (1992). 

451 


